Edexcel Maths C3

Topic Questions from Papers

Numerical Methods

- **2.** (a) Differentiate with respect to x
 - (i) $3 \sin^2 x + \sec 2x$,

(3)

(ii) $\{x + \ln(2x)\}^3$.

(3)

Given that $y = \frac{5x^2 - 10x + 9}{(x - 1)^2}$, $x \ne 1$,

(b) show that $\frac{dy}{dx} = -\frac{8}{(x-1)^3}.$

(6)

5.

$$f(x) = 2x^3 - x - 4.$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}.$$

(3)

The equation $2x^3 - x - 4 = 0$ has a root between 1.35 and 1.4.

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{1}{2}\right)},$$

with $x_0 = 1.35$, to find, to 2 decimal places, the values of x_1 , x_2 and x_3 .

(3)

The only real root of f(x) = 0 is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.392$, to 3 decimal places.

-	(2)	
•	.71	

5.

Figure 2 shows part of the curve with equation

$$y = (2x-1)\tan 2x, \ \ 0 \le x < \frac{\pi}{4}.$$

The curve has a minimum at the point P. The x-coordinate of P is k.

(a) Show that k satisfies the equation

$$4k + \sin 4k - 2 = 0.$$

(6)

The iterative formula

$$x_{n+1} = \frac{1}{4}(2 - \sin 4x_n), \ x_0 = 0.3,$$

is used to find an approximate value for k.

(b) Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 decimal places.

(3)

(c) Show that k = 0.277, correct to 3 significant figures.

(2)

uestion 5 continued	blank

7.

$$f(x) = x^4 - 4x - 8$$
.

(a) Show that there is a root of f(x) = 0 in the interval [-2, -1].

(3)

(b) Find the coordinates of the turning point on the graph of y = f(x).

(3)

(c) Given that $f(x) = (x-2)(x^3 + ax^2 + bx + c)$, find the values of the constants, a, b and c.

(3)

(d) In the space provided on page 21, sketch the graph of y = f(x).

(3)

(e) Hence sketch the graph of y = |f(x)|.

(1)

Question 7 continued		Leave blank
Question / Continueu		
	(Total 13 marks)	Q7
	(10tal 13 marks)	

4.

$$f(x) = -x^3 + 3x^2 - 1.$$

(a) Show that the equation f(x) = 0 can be rewritten as

$$x = \sqrt{\left(\frac{1}{3 - x}\right)}. (2)$$

(b) Starting with $x_1 = 0.6$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{1}{3 - x_n}\right)}$$

to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 4 decimal places.

(2)

(c) Show that x = 0.653 is a root of f(x) = 0 correct to 3 decimal places.

- 3. $f(x) = \ln(x+2) x + 1, \quad x > -2, x \in \mathbb{R}$.
 - (a) Show that there is a root of f(x) = 0 in the interval 2 < x < 3.

(2)

(b) Use the iterative formula

$$x_{n+1} = \ln(x_n + 2) + 1, \ x_0 = 2.5$$

to calculate the values of x_1, x_2 and x_3 giving your answers to 5 decimal places.

(3)

(c) Show that x = 2.505 is a root of f(x) = 0 correct to 3 decimal places.

(2)

6

7.

$$f(x) = 3x^3 - 2x - 6$$

(a) Show that f(x) = 0 has a root, α , between x = 1.4 and x = 1.45

(2)

(b) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)}, \quad x \neq 0.$$

(3)

(c) Starting with $x_0=1.43$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{2}{3}\right)}$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(3)

(d) By choosing a suitable interval, show that $\alpha = 1.435$ is correct to 3 decimal places.

(Total 11 marks)
TOTAL FOR PAPER: 75 MARKS

7.

$$f(x) = 3xe^x - 1$$

The curve with equation y = f(x) has a turning point P.

(a) Find the exact coordinates of P.

(5)

The equation f(x) = 0 has a root between x = 0.25 and x = 0.3

(b) Use the iterative formula

$$x_{n+1} = \frac{1}{3} e^{-x_n}$$

with $x_0 = 0.25$ to find, to 4 decimal places, the values of x_1 , x_2 and x_3 .

(3)

(c) By choosing a suitable interval, show that a root of f(x) = 0 is x = 0.2576 correct to 4 decimal places.

Question 7 continued	bl
Question / Continued	

1.

Figure 1

Figure 1 shows part of the curve with equation $y = -x^3 + 2x^2 + 2$, which intersects the x-axis at the point A where x = a.

To find an approximation to α , the iterative formula

$$x_{n+1} = \frac{2}{(x_n)^2} + 2$$

is used.

(a) Taking $x_0 = 2.5$, find the values of x_1 , x_2 , x_3 and x_4 . Give your answers to 3 decimal places where appropriate.

(3)

(b) Show that $\alpha = 2.359$ correct to 3 decimal places.

2.

$$f(x) = x^3 + 2x^2 - 3x - 11$$

(a) Show that f(x) = 0 can be rearranged as

$$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2.$$

(2)

The equation f(x) = 0 has one positive root α .

The iterative formula $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$ is used to find an approximation to α .

(b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2 , x_3 and x_4 .

(3)

(c) Show that $\alpha = 2.057$ correct to 3 decimal places.

4. (i) Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$.

(4)

(ii) Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^2}$.

(5)

- 3. $f(x) = 4\csc x 4x + 1$, where x is in radians.
 - (a) Show that there is a root α of f(x) = 0 in the interval [1.2, 1.3].
 - (b) Show that the equation f(x) = 0 can be written in the form

$$x = \frac{1}{\sin x} + \frac{1}{4} \tag{2}$$

(c) Use the iterative formula

$$x_{n+1} = \frac{1}{\sin x_n} + \frac{1}{4}, \quad x_0 = 1.25,$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(3)

(d) By considering the change of sign of f(x) in a suitable interval, verify that $\alpha = 1.291$ correct to 3 decimal places.

(2)

Question 3 continued	blaı

4. The function f is defined by

$$f: x \mapsto |2x-5|, x \in \mathbb{R}$$

(a) Sketch the graph with equation y = f(x), showing the coordinates of the points where the graph cuts or meets the axes.

(2)

(b) Solve f(x) = 15 + x.

(3)

The function g is defined by

$$g: x \mapsto x^2 - 4x + 1, \quad x \in \mathbb{R}, \quad 0 \leqslant x \leqslant 5$$

(c) Find fg(2).

(2)

(d) Find the range of g.

- 2. $f(x) = 2\sin(x^2) + x 2$, $0 \le x < 2\pi$
 - (a) Show that f(x) = 0 has a root α between x = 0.75 and x = 0.85 (2)

The equation f(x) = 0 can be written as $x = \left[\arcsin\left(1 - 0.5x\right)\right]^{\frac{1}{2}}$.

(b) Use the iterative formula

$$x_{n+1} = \left[\arcsin\left(1 - 0.5x_n\right)\right]^{\frac{1}{2}}, \quad x_0 = 0.8$$

to find the values of x_1 , x_2 and x_3 , giving your answers to 5 decimal places.

(3)

(c) Show that $\alpha = 0.80157$ is correct to 5 decimal places.

2.

$$f(x) = x^3 + 3x^2 + 4x - 12$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \qquad x \neq -3$$
(3)

The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{(3+x_n)}\right)}, n \ge 0$$

with $x_0 = 1$ to find, to 2 decimal places, the value of x_1 , x_2 and x_3 .

(3)

The root of f(x) = 0 is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.272$ to 3 decimal places.

2.

$$g(x) = e^{x-1} + x - 6$$

(a) Show that the equation g(x) = 0 can be written as

$$x = \ln(6 - x) + 1, \qquad x < 6$$

(2)

The root of g(x) = 0 is α .

The iterative formula

$$x_{n+1} = \ln(6 - x_n) + 1,$$
 $x_0 = 2$

is used to find an approximate value for α .

(b) Calculate the values of x_1 , x_2 and x_3 to 4 decimal places.

(3)

(c) By choosing a suitable interval, show that $\alpha = 2.307$ correct to 3 decimal places.

•	7	1
	ಾ	
۱	\sim	,

7.

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x) where

$$f(x) = (x^2 + 3x + 1)e^{x^2}$$

The curve cuts the x-axis at points A and B as shown in Figure 2.

(a) Calculate the x coordinate of A and the x coordinate of B, giving your answers to 3 decimal places.

(2)

(b) Find f'(x).

(3)

The curve has a minimum turning point at the point P as shown in Figure 2.

(c) Show that the x coordinate of P is the solution of

$$x = -\frac{3(2x^2 + 1)}{2(x^2 + 2)}$$

(3)

(d) Use the iteration formula

$$x_{n+1} = -\frac{3(2x_n^2 + 1)}{2(x_n^2 + 2)}, \quad \text{with } x_0 = -2.4,$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

The *x* coordinate of *P* is α .

(e) By choosing a suitable interval, prove that $\alpha = -2.43$ to 2 decimal places.

(2)

Question 7 continued	Leave blank

4.	$f(x) = 25x^2e^{2x} - 16,$	$x \in \mathbb{R}$
⊤.	1(x) = 25x - 10	$\mathcal{A} \subset \mathbb{R}$

(a) Using calculus, find the exact coordinates of the turning points on the curve with equation y = f(x).

(5)

(b) Show that the equation f(x) = 0 can be written as $x = \pm \frac{4}{5} e^{-x}$ (1)

The equation f(x) = 0 has a root α , where $\alpha = 0.5$ to 1 decimal place.

(c) Starting with $x_0 = 0.5$, use the iteration formula

$$x_{n+1} = \frac{4}{5} e^{-x_n}$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

(d) Give an accurate estimate for α to 2 decimal places, and justify your answer.

(2)

Question 4 continued	Leave blank
Question 4 continued	

Core Mathematics C3

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx k sec² kx
sec x sec x tan x
cot x -cosec² x
cosec x -cosec x cot x

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{r} a^{n-r} b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$

$$\text{where } \binom{n}{r} = {}^{n} C_{r} = \frac{n!}{r!(n-r)!}$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b-a}{n}$

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$